1. Introduction to Enumeration

An Enumeration (enum) in C language is a user-defined data type that consists of a set of named integer
constants.

It is mainly used to assign meaningful names to integer values, which improves program readability and
maintainability.

Definition

Enumeration is a user-defined data type that allows a variable to take only one value from a predefined set of
named constants.

2. Need for Enumeration

Enumeration is needed to:

o Improve code readability

e Avoid using meaningless numbers (magic numbers)
e Make programs easier to understand and maintain

o Restrict variable values to a fixed set

o Reduce logical errors

Example Without enum

Example With enum
enum Day {MON, TUE, WED, THU, FRI, SAT, SUN};

enum Day day = WED;

3. Declaration of Enumeration

Syntax

enum enum_name
constantl,
constant2,
constant3,

N

Example

enum Color

{

RED,
GREEN,




BLUE

Here:

e Color is the enum name
e RED, GREEN, BLUE are enum constants

4. Enumeration Variable Declaration

Syntax

enum enum_name variable_name;

Example

enum Color ¢;
c = RED;

5. Default Values in Enumeration

By default:

e First enum constant = 0
o Next constants increase by 1

Example
enum Week

{

MON, //0
TUE, //1

WED, //2
THU, //3
FRI //4

6. Assigning Custom Values to Enum Constants

Enum constants can be assigned explicit values.

Example
enum Status

{

FAIL =0,
PASS =1




Partial Assignment
enum Number

{

ONE =1,
TWO,
THREE

Values will be:

° ONE =1
. TWO =2
e THREE =3

7. Enumeration and Integer Relationship

o Enum constants are internally stored as integers
e Enum variables can be compared using relational operators

Example

enum Level {LOW, MEDIUM, HIGH};
enum Level | = MEDIUM;

if(1 == MEDIUM)
printf("Medium Level");

8. Enumeration with switch Statement

Enums are commonly used with switch-case.

Example
enum Day {MON, TUE, WED, THU, FRI};

enum Day d = WED;

switch(d)

{

case MON: printf("Monday"); break;
case WED: printf("Wednesday"); break;
default: printf("Other Day");

}

9. Enumeration Without Enum Name (Anonymous Enum)

Enum can be declared without a name.



Example

10. typedef with Enumeration

typedef 1S used to create an alias for enum.

Example

typedef enum
{

OFF,
ON
Switch;

Usage:

Switch s = ON;

11. Enumeration vs #fdefine

Feature enum #define

Type safety Yes No
Debugging Easy Difficult
Scope Controlled Global
Readability High Moderate

12. Size of Enumeration

o Size of enum is generally same as int
e Can vary depending on compiler

Example

printf("%d", sizeof(enum Color));



13. Enumeration in Programs

Example: Menu Driven Program
enum Menu {ADD = 1, SUB, MUL, DIV},

int choice = ADD;

if(choice == ADD)
printf("Addition Selected");

14. Advantages of Enumeration

Improves code readability

Makes program self-documenting
Reduces errors

Easy to maintain

Useful in decision making

15. Limitations of Enumeration

Cannot store floating-point values
Limited to integer constants

No string values directly

Less flexible than variables

16. Common Errors with Enumeration

Assigning invalid values
Confusing enum with variables
Forgetting enum keyword
Assuming enum is string type

alb e

17. Enumeration and Functions

Enum values can be:

e Passed to functions



e Returned from functions

Example
enum Result {FAIL, PASS};

enum Result check(int marks)

if(marks >= 40)
return PASS;
else
return FAIL;

18. Applications of Enumeration

Days of week
Months of year
Menu options
Error codes

State machines
Embedded systems

19. Difference Between Enumeration and Structure

Feature Enumeration Structure ‘
Data types Single (int) Multiple
Purpose Named constants Group data
Memory Single value Multiple values

20. Best Practices

Use meaningful enum names
Prefer enum over #define

Use typedef for simplicity
Avoid assigning invalid values



21. Interview / Exam Important Points

o Enum constants are integers

e Default value starts from 0

e Enum improves readability

o Used with switch statements

e Enum is a user-defined data type

22. Conclusion

Enumeration in C language is a powerful feature that allows programmers to define a set of named integer
constants. It enhances program clarity, reduces errors, and improves maintainability. Enums are widely used in
real-world applications, especially in menu-driven programs, system programming, and embedded systems.



