
1. Introduction to Enumeration 

An Enumeration (enum) in C language is a user-defined data type that consists of a set of named integer 
constants. 
It is mainly used to assign meaningful names to integer values, which improves program readability and 
maintainability. 

Definition 

Enumeration is a user-defined data type that allows a variable to take only one value from a predefined set of 
named constants. 

 

2. Need for Enumeration 

Enumeration is needed to: 

 Improve code readability 
 Avoid using meaningless numbers (magic numbers) 
 Make programs easier to understand and maintain 
 Restrict variable values to a fixed set 
 Reduce logical errors 

Example Without enum 
int day = 3; 

Example With enum 
enum Day {MON, TUE, WED, THU, FRI, SAT, SUN}; 
enum Day day = WED; 

 

3. Declaration of Enumeration 

Syntax 
enum enum_name 
{ 
    constant1, 
    constant2, 
    constant3, 
    ... 
}; 

Example 
enum Color 
{ 
    RED, 
    GREEN, 



    BLUE 
}; 

Here: 

 Color is the enum name 
 RED, GREEN, BLUE are enum constants 

 

4. Enumeration Variable Declaration 

Syntax 
enum enum_name variable_name; 

Example 
enum Color c; 
c = RED; 

 

5. Default Values in Enumeration 

By default: 

 First enum constant = 0 
 Next constants increase by 1 

Example 
enum Week 
{ 
    MON,    // 0 
    TUE,    // 1 
    WED,    // 2 
    THU,    // 3 
    FRI     // 4 
}; 

 

6. Assigning Custom Values to Enum Constants 

Enum constants can be assigned explicit values. 

Example 
enum Status 
{ 
    FAIL = 0, 
    PASS = 1 
}; 

 



Partial Assignment 
enum Number 
{ 
    ONE = 1, 
    TWO, 
    THREE 
}; 

Values will be: 

 ONE = 1 
 TWO = 2 
 THREE = 3 

 

7. Enumeration and Integer Relationship 

 Enum constants are internally stored as integers 
 Enum variables can be compared using relational operators 

Example 
enum Level {LOW, MEDIUM, HIGH}; 
enum Level l = MEDIUM; 
 
if(l == MEDIUM) 
    printf("Medium Level"); 

 

8. Enumeration with switch Statement 

Enums are commonly used with switch-case. 

Example 
enum Day {MON, TUE, WED, THU, FRI}; 
 
enum Day d = WED; 
 
switch(d) 
{ 
    case MON: printf("Monday"); break; 
    case WED: printf("Wednesday"); break; 
    default: printf("Other Day"); 
} 

 

9. Enumeration Without Enum Name (Anonymous Enum) 

Enum can be declared without a name. 



Example 
enum 
{ 
    FALSE, 
    TRUE 
}; 

 

10. typedef with Enumeration 

typedef is used to create an alias for enum. 

Example 
typedef enum 
{ 
    OFF, 
    ON 
} Switch; 

Usage: 

Switch s = ON; 

 

11. Enumeration vs #define 
Feature enum #define 

Type safety Yes No 

Debugging Easy Difficult 

Scope Controlled Global 

Readability High Moderate 

 

12. Size of Enumeration 

 Size of enum is generally same as int 
 Can vary depending on compiler 

Example 
printf("%d", sizeof(enum Color)); 

 



13. Enumeration in Programs 
 

Example: Menu Driven Program 
enum Menu {ADD = 1, SUB, MUL, DIV}; 
 
int choice = ADD; 
 
if(choice == ADD) 
    printf("Addition Selected"); 

 

14. Advantages of Enumeration 

 Improves code readability 
 Makes program self-documenting 
 Reduces errors 
 Easy to maintain 
 Useful in decision making 

 

15. Limitations of Enumeration 

 Cannot store floating-point values 
 Limited to integer constants 
 No string values directly 
 Less flexible than variables 

 

16. Common Errors with Enumeration 

1. Assigning invalid values 
2. Confusing enum with variables 
3. Forgetting enum keyword 
4. Assuming enum is string type 

 

17. Enumeration and Functions 

Enum values can be: 

 Passed to functions 



 Returned from functions 

Example 
enum Result {FAIL, PASS}; 
 
enum Result check(int marks) 
{ 
    if(marks >= 40) 
        return PASS; 
    else 
        return FAIL; 
} 

 

18. Applications of Enumeration 

 Days of week 
 Months of year 
 Menu options 
 Error codes 
 State machines 
 Embedded systems 

 

19. Difference Between Enumeration and Structure 
Feature Enumeration Structure 

Data types Single (int) Multiple 

Purpose Named constants Group data 

Memory Single value Multiple values 

 

20. Best Practices 

 Use meaningful enum names 
 Prefer enum over #define 
 Use typedef for simplicity 
 Avoid assigning invalid values 

 



21. Interview / Exam Important Points 

 Enum constants are integers 
 Default value starts from 0 
 Enum improves readability 
 Used with switch statements 
 Enum is a user-defined data type 

 

22. Conclusion 

Enumeration in C language is a powerful feature that allows programmers to define a set of named integer 
constants. It enhances program clarity, reduces errors, and improves maintainability. Enums are widely used in 
real-world applications, especially in menu-driven programs, system programming, and embedded systems. 

 


